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Fully developed travelling wave solutions and
bubble formation in fluidized beds
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(Received 12 April 1996 and in revised form 24 September 1996)

It is well known that most gas fluidized beds of particles bubble, while most liquid
fluidized beds do not. It was shown by Anderson, Sundaresan & Jackson (1995),
through direct numerical integration of the volume-averaged equations of motion for
the fluid and particles, that this distinction is indeed accounted for by these equations,
coupled with simple, physically credible closure relations for the stresses and interphase
drag. The aim of the present study is to investigate how the model equations afford this
distinction and deduce an approximate criterion for separating bubbling and non-
bubbling systems. To this end, we have computed, making use of numerical
continuation techniques as well as bifurcation theory, the one- and two-dimensional
travelling wave solutions of the volume-averaged equations for a wide range of
parameter values, and examined the evolution of these travelling wave solutions
through direct numerical integration. It is demonstrated that whether bubbles form or
not is dictated by the value of Ω¯ (ρ

s
�$
t
}Ag)"/#, where ρ

s
is the density of particles, �

t

is the terminal settling velocity of an isolated particle, g is acceleration due to gravity
and A is a measure of the particle phase viscosity. When Ω is large ("C 30), bubbles
develop easily. It is then suggested that a natural scale for A is ρ

s
�
t
d
p
, so that Ω# is

simply a Froude number.

1. Introduction

Fluidized beds are frequently classified on the basis of their appearance as either
bubbling (‘aggregative ’) or non-bubbling (‘particulate ’). Particulate beds present a
smooth appearance and expand progressively as the flow rate of fluid is increased. In
contrast, aggregatively fluidized beds are traversed by rising pockets of fluid, which are
reminiscent of gas bubbles in liquids. Typical examples of particulate and aggregative
beds are 1 mm glass beads fluidized by water and 200 µm glass beads fluidized by
ambient air, respectively. Wilhelm & Kwauk (1948) observed empirically that a
fluidized bed exhibits particulate behaviour if Fr

m
¯ u#

m
}gd

p
' 1, where u

m
denotes the

minimum fluidization velocity and d
p

is the particle diameter.
A number of theoretical studies have appeared in the literature, trying to differentiate

between particulate and aggregative behaviour through linear stability analysis of the
uniformly fluidized state. Such analyses have been based on (volume or ensemble)
averaged equations of motion consisting of continuity and momentum equations for
the two phases, with speculative closures for the effective stresses (Pigford & Baron
1965; Anderson & Jackson 1967, 1968). Garg & Pritchett (1975) showed that the
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uniformly fluidized state can be stabilized by including in the particle phase momentum
balance equation a pressure associated with the particle phase that increases
sufficiently rapidly with particle concentration. The physical origin of such a stabilizing
term has been the subject of much debate (Mutsers & Rietema 1977; Foscolo &
Gibilaro 1984; Batchelor 1988). Experiments by Anderson & Jackson (1969) and El-
Kaissy & Homsy (1976) revealed that liquid-fluidized beds of small glass beads are not
uniform, but are traversed by slowly developing, rising waves ; therefore one should not
attempt to predict the distinction in behaviour between bubbling and non-bubbling
beds on the basis of linear stability of the uniform state (Anderson, Sundaresan &
Jackson 1995). Although a large number of studies have appeared on the extension of
the linear stability theory to take into account the nonlinearity of the equations of
motion (e.g. Fanucci, Ness & Yen 1979; Needham & Merkin 1983; Go$ z 1992, 1995;
Harris & Crighton 1994), these analyses have not revealed any qualitative distinction
between particulate and aggregative beds. (See Glasser, Kevrekidis & Sundaresan
1996, hereinafter referred to as GKS1, for a summary of these studies.)

Bubble-like structures in gas-fluidized beds have indeed been generated by
numerically integrating the volume-averaged equations of motion (Pritchett, Blake &
Garg 1978; Gidaspow, Syamlal & Seo 1986; Syamlal & O’Brien 1989; Kuipers, Prins
& Van Swaaij 1991; Herna! ndez & Jime!nez 1991). Anderson et al. (1995, hereinafter
referred to as ASJ) have demonstrated through numerical integration of volume-
averaged equations of motion in two dimensions, assuming spatial periodicity, that
these equations of motion do contain the physics needed to distinguish between
bubbling and non-bubbling systems. Two-dimensional disturbances in a bed of 200 µm
glass beads fluidized by ambient air were found to develop into bubble-like structures,
which was not the case in a bed of 1 mm glass beads fluidized by water. Bubble-like
solutions developed rapidly in the gas-fluidized bed, and they appeared to be stable
two-dimensional travelling wave solutions of the equations of motion. In contrast, the
two-dimensional transient solution structure continued to change in the water-fluidized
bed, without settling down into any recognizable pattern even after a long period of
integration. However, the origin of this difference between bubbling and non-bubbling
systems is not fully resolved, and this distinction may be contained in the model
equations in one of several different manners.

For example, it is possible that fully developed, two-dimensional, bubble-like
structures are predicted by the model equations only for parameter values
representative of bubbling beds, but not particulate beds. It is equally conceivable that
fully-developed, bubble-like structures exist for both bubbling and non-bubbling
systems, but their stability characteristics are different, i.e. they are stable in the case
of bubbling systems and unstable in the case of non-bubbling systems. Finally, it may
turn out that fully developed and linearly stable travelling wave solutions having
bubble-like structure exist for both systems and that such solutions develop easily
(from small disturbances which are invariably present in any system) in the case of a
bubbling bed, but not a non-bubbling bed. It is important to understand which of these
scenarios is the correct picture, in order to develop a proper physical basis for the
manner in which the model equations afford differentiation of bubbling beds from non-
bubbling ones, and to deduce a criterion to distinguish between these types of beds.

With this in mind, we have performed a detailed computational analysis of fully
developed one- and two-dimensional travelling wave solutions of the volume-averaged
equations of motion for fluidized suspensions. The results of such a study for
parameter values that are typical of gas-fluidized beds (200 µm glass beads fluidized by
ambient air, analysed by ASJ, being one of the examples) were presented in an earlier
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paper, GKS1, where we showed that one-dimensional travelling wave solutions (1D-
TWs) emerged from the uniform state through a Hopf bifurcation and that two-
dimensional travelling wave solutions (2D-TWs) are born out of the 1D-TWs. The
former has been noted in the literature previously (e.g. Needham & Merkin 1986; Go$ z
1992, 1993). The latter has been deduced analytically by Go$ z (1995) through stability
analysis of small-amplitude 1D-TWs. Our computational approach allowed us to
examine for the first time high-amplitude solutions and demonstrate that fully
developed 2D-TWs of high amplitude have a bubble-like structure. Furthermore, the
qualitative features of the bifurcation diagram were shown to be insensitive to small
changes in model parameters or the closures.

In the present study, we have performed a similar bifurcation analysis for a wide
range of parameter values, including those representative of 1 mm glass beads fluidized
by water (a non-bubbling system analysed by ASJ) and 1 mm lead shot fluidized by
water (a bubbling system). It will be shown that both bubbling and non-bubbling
systems have identical bifurcation structure, and that high-amplitude 2D-TWs in both
cases have a bubble-like structure. Furthermore, in every case examined in the present
study, these bubble-like structures were found to be linearly stable, independent of
whether the system is known to be inherently bubbling or not. It will be shown that the
particle-phase velocity field in high-amplitude 2D-TWs of a bubbling bed differs from
that of a non-bubbling bed in a subtle way, which influences the observability of these
2D-TWs through transient integration of the averaged equations of motion from initial
states which are far away from the bubble-like solution. Thus, the distinction between
bubbling and non-bubbling systems will be shown to be a feature of high-amplitude
solutions, explaining why previous weakly nonlinear analyses have not been able to
identify this distinction. Finally, the key parameter which distinguishes bubbling and
non-bubbling systems will be identified, and an approximate criterion for this
separation will be presented.

The model equations employed in the present study are summarized in §2. Section
3 is devoted to a detailed description of the results generated through computational
bifurcation analysis and transient integration of the model equations for three specific
fluidized bed systems which have been studied experimentally before. In §4, we discuss
the role of each of the dimensionless groups appearing in the model and identify an
approximate criterion for discriminating between bubbling and non-bubbling systems.

2. Model equations

The continuity and momentum balance equations for the fluid and particle phases,
originally proposed by Anderson & Jackson (1967), are used in the present study.
These take the form

¥φ
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where φ denotes the volume fraction of particles ; � and u denote the local-average
velocities of the particles and the fluid; ρ

s
and ρ

f
are the densities ; g is the specific

gravity force ; f is the average interaction force per unit volume of bed, exerted on the
particles by the fluid, comprising interphase drag and virtual mass effects ; σ

s
and σ

f
are

the effective stress tensors for the particle and fluid phase, respectively.
Anderson et al. (1995) demonstrated that a distinction can be made between

bubbling and non-bubbling systems through transient integration of the above system
of equations, coupled with the following simple, physically credible closures :

f¯ (1®φ)β(u®�), (5)
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Equation (5) represents a drag force proportional to the local relative velocity and the
factor β is deduced from the well-known Richardson–Zaki (1954) correlation to be

β¯
(ρ

s
®ρ

f
) gφ

�
t
(1®φ)n−"

, (8)

where n depends on the Reynolds number for an isolated particle falling at its terminal
velocity, �

t
. The effective viscosity of the fluid phase (µW

f
) and pressure (p

f
) are taken to

be the viscosity of the pure fluid (µ
f
) and local average value of the fluid pressure,

respectively, while p
s

and µ
s

are assumed to be monotone increasing functions of φ
which vanish when φ¯ 0 and increase without bound as φUφ

p
, where φ

p
is the

volume fraction of particles at random close packing. For the particle phase pressure
and viscosity we adopt the same functional forms employed in ASJ and GKS1, namely,
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where C
"
, r and A are positive constants, and are treated as model parameters. With

the above closures, the equations of motion permit a solution representing a uniformly
fluidized bed of infinite extent, with
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where j is the unit vector in the y-direction pointing vertically upward, and φ
!
and u

!
are constants. It is well known that when the mean volume fraction of particles in the
bed, φ

!
, is smaller than some critical value, φ

c
, the state of uniform fluidization is

linearly unstable and the fastest growing disturbance is an upward travelling wave with
no horizontal structure (Anderson & Jackson 1968). This one-dimensional travelling
wave takes the form of alternating bands of high and low voidage, which move upward
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through the bed, irrespective of whether the system is bubbling or not (ASJ). Two-
dimensional travelling wave solutions are obtained through loss of stability of the 1D-
TWs to transverse perturbations. Further discussion of these features can be found in
ASJ and GKS1.

The sensitivity of the bifurcation structure to the assumed functional forms for p
s

and µ
s

has been examined by Glasser (1996). It is simply noted here that the key
features of the solution structure, namely the birth of 1D-TWs from the uniform state
through a Hopf bifurcation and the emergence of 2D-TWs from 1D-TWs, are
insensitive to the assumed forms. This robustness has already been demonstrated in
GKS1 through several examples. Thus, the qualitative features discussed in the present
manuscript are not limited to the speculative closures given in (9) and (10).

2.1. Rele�ant dimensionless groups and parameters

Casting the model equations in a dimensionless form, using

ρ
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, �
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,

as characteristic density, velocity, length and time, respectively (GKS1), one obtains
the following dimensionless groups:
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, density ratio
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, viscosity ratio
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.

The model contains, in addition to these dimensionless groups, two other dimensionless
parameters, namely, n and r.

Through a linear stability analysis of the state of uniform fluidization one can readily
determine the value of φ

c
as a function of the values of the model parameters : φ

c
¯

φ
c
(δ,γ,α,Ω, n, r) which can always be rewritten as α¯α(δ,γ,φ

c
,Ω, n, r). It has been

argued in ASJ that the latter representation is more appropriate for the purpose of
identifying the difference between bubbling and non-bubbling systems, and this has
been adopted in GKS1 and the present study.

3. Numerical results

We will first present computational results for three specific systems which have been
studied experimentally before. The dimensional and dimensionless parameters for
these systems are listed in table 1. The 200 µm glass beads fluidized by ambient air
(column 1) constitute a bubbling system, and its bifurcation behaviour has been
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Glass beads
in air

Glass beads
in water

Lead shot
in water

ρ
s

2±2 g cm−$ 2±2 g cm−$ 11±3 g cm−$

ρ
f

0±0013 g cm−$ 1±0 g cm−$ 1±0 g cm−$

µ
f

0±0181 cP 1±0 cP 1±0 cP
a 100 µm 500 µm 500 µm
�
t

142 cm s−" 14±3 cm s−" 49±0 cm s−"
φ

p
0±65 0±65 0±65

φ
c

0±576 0±576 0±576
φ
!

0±57 0±57 0±57
A 0±5 p 0±5 p 0±5 p
µ

s
(φ

!
) 6±65 p 6±65 p 6±65 p

C
"

1±08 Pa 0±02653 Pa 2±135 Pa
r 0±3 0±3 0±3
L 0±182 cm 0±0576 cm 0±0470 cm
T 0±00128 s 0±00403 s 0±000960 s
R

t
20 143 490

n 4±35 3±70 3±39
δ 0±000591 0±455 0±0885
γ 0±000363 0±02 0±02
α 0±000242 0±000590 0±000787
Ω 113±7 3±623 52±09
B 3±5 2±5 10±5

T 1. Values of parameters and dimensionless groups for the fluidized beds. First column, 200 µm
diameter glass beads in air ; second column, 1 mm diameter glass beads in water ; third column, 1 mm
diameter lead shot in water.

presented in GKS1. The system of 1 mm glass beads fluidized by water (column 2) is
known to be non-bubbling. We will consider the system of 1 mm lead shot fluidized by
water (column 3) to be a bubbling system, as it has been observed that pockets of water
injected into such a bed develop into bubbles which retain their integrity (Harrison,
Davidson & de Kock 1961). Our goal is to examine whether the differences in
behaviour can be captured if the same rheological assumptions are made for the
various beds. We have therefore adopted the same closure relations for the different
cases. It is known experimentally that these three systems start to exhibit time-
dependent flow patterns at approximately the same volume fraction. With this in mind,
the critical volume fraction, φ

c
, has been assumed to be the same for all three systems.

The parameters C
"
and r in (9) permit the magnitude and slope of the particle pressure,

and hence φ
c
, to be adjusted. We have taken r to be the same for the different cases.

It then follows that the parameter C
"

in (9) will have to be different for the three
systems (see table 1). The terminal settling velocities were calculated using the empirical
correlations from Kunii & Levenspiel (1991). Much less is known about the
appropriate choice of A for these systems. We will assign, for the time being, the same
value of A for all three systems, and return to this issue later on. The volume fraction
of particles in the uniform state, φ

!
, has been set to be 0±57 in all three cases. As φ

!
!

φ
c
, this uniform state is unstable in all three cases. We will examine in detail the

consequences of this instability. We simply note here that we have analysed a number
of different fluidized bed systems and that the cases described in table 1 are
representative examples. Subsequently, we will discuss results obtained for several
different combinations of the dimensionless groups to bring forth the key parameter
that separates bubbling and non-bubbling systems.
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F 1. Linear stability of the uniform state for k
x
¯ 0. Real part of the (complex) growth rate as

a function of k
y
, φ

!
¯ 0±57. (a) Glass beads in air. (b) Lead shot in water. (c) Glass beads in water.

3.1. Linear stability of the uniform state

The linear stability of the uniform state, φ
!
¯ 0±57, against small one-dimensional

(vertical) disturbances is easily analysed. The results of this analysis for the three
systems in table 1 are summarized in figure 1, where the real part of the complex growth
rate of one-dimensional disturbances is plotted against their vertical wavenumber k

y

(dimensionless). The horizontal wavenumber, k
x
, is zero for all the curves. For all k

y

values, the growth rate is complex, indicating that the instability is a travelling wave
(not shown). The maximum growth rates for the glass beads in air (point Z ) and lead
shot in water (point Y ) are comparable, while that for the case of glass beads in water
(point X ) is an order of magnitude smaller ; this was noted by Jackson (1963) over three
decades ago.

3.2. One-dimensional tra�elling wa�es

Points A, B and C in figure 1 correspond to the Hopf bifurcation points, each of which
signals the birth of a family of one-dimensional travelling wave (1D-TW) solutions
away from the uniform state. Every 1D-TW is characterized by two parameters,
namely, φ

!
and k

y
. We will be mostly concerned with the family of 1D-TWs generated

by holding φ
!

constant and allowing k
y

to vary. Each 1D-TW will have its own
(dimensionless) wave speed with respect to the laboratory frame (defined as the frame
of reference where the average flux of particles in the periodic box is zero), c, which is
determined as a part of the solution. In a frame of reference moving at this wave speed,
the wave will appear as a steady solution. The procedure to compute these 1D-TWs
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F 2. Bifurcation diagrams for one-dimensional travelling waves. Volume fraction of solids
norm, sAφs, versus k

y
, φ

!
¯ 0±57. (a) Glass beads in air. Inset is one-dimensional travelling wave

corresponding to point Z. (b) Lead shot in water. Inset is one-dimensional travelling wave
corresponding to point Y. (c) Glass beads in water. Inset is one-dimensional travelling wave
corresponding to point X.

through a continuation scheme starting from the Hopf bifurcation point has been
discussed in GKS1. In these calculations, all the dependent variables appearing in the
model are approximated with a Fourier series in the wave frame. Figure 2 shows the
particle volume fraction norm, sAφs, as a function of k

y
for the three fluidized beds

described in table 1 (and figure 1). The average volume fraction of particles, φ
!
, in each

1D-TW is 0±57. The volume fraction norm, sAφs, is the L
#

norm of the Fourier
coefficients for the particle volume fraction (GKS1). The mean volume fraction of
particles in the wave is not included in the norm, so the base (uniform) state is
represented by the line sAφs¯ 0. Thus, sAφs gives a measure of the amplitude of the
solution with respect to the uniform state. Points X, Y and Z in figure 2 correspond to
their namesakes in figure 1. The 1D-TWs corresponding to these three points are
shown as insets in figure 2. It is readily apparent that these waves are qualitatively
similar, so bubbling and non-bubbling beds cannot be distinguished on the basis of the
structure of 1D-TWs (Dankworth & Sundaresan 1991; ASJ).

3.3. Stability of 1D-TWs to two-dimensional perturbations

The linear stability of each of the three 1D-TWs in the insets of figure 2 against small
disturbances which posses the same y-periodicity as the 1D-TW itself and are also
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F 3. Linear stability of fully developed one-dimensional travelling wave for φ
!
¯ 0±57. (a) Glass

beads in air, k
y
¯ 0±373. (b) Lead shot in water, k

y
¯ 0±223. (c) Glass beads in water, k

y
¯ 0±204.

periodic in the x-direction has been analysed, and the results are summarized in figures
3–6. The growth rate of the disturbance as a function of k

x
is shown in figures 3(a)–3(c)

for the three 1D-TWs corresponding to points Z, Y and X in figure 2, respectively. It
can be seen that for all three cases the 1D-TW is stable for large k

x
. As k

x
is decreased

one real eigenvalue goes through zero and becomes positive (when the 1D-TW is
viewed from a frame of reference moving with the wave). The points at which the
eigenvalue goes through zero (marked as points D, E and F in figures 3(a)–3(c) signal
the birth of two-dimensional travelling wave solutions. Note that the maximum growth
rates for the two-dimensional instability for these three 1D-TWs (points U, V and W )
are comparable in magnitude. This is in sharp contrast with the growth rates for the
one-dimensional instability away from the uniform state (see figure 1a–c). This
difference has been noted previously by ASJ.

The eigenfunction corresponding to the most unstable eigenvalue leading to the
instability of the 1D-TW for the ‘ lead shot in water ’ system (point V in figure 3b) is
presented in figure 4. The spatial variation of φ in the 1D-TW is shown in figure 4(a).
The eigenfunctions associated with particle volume fraction, fluid phase velocity and
particle phase velocity are shown in figures 4(b), 4(c) and 4(d), respectively. The
quantities N and M in the figure caption refer to the number of Fourier modes in the
y- and x-directions, respectively, used to generate the results shown in the figure. Each
of these figures displays spatial variation over one periodic cell of height 2π}k

y
and

width 2π}k
x
. The eigenfunctions corresponding to point U in figure 3(c) (for the ‘glass
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F 4. Eigenfunctions corresponding to maximum growth rate (point V ) in figure 3(b). Lead shot
in water ; k

y
¯ 0±223, k

x
¯ 0±0700, N¯ 4, M¯ 1. (a) The corresponding one-dimensional travelling

wave, height versus volume fraction of solids. The broken line shows the mean volume fraction of
solids, φ

!
¯ 0±57. (b) Grey-scale plot of the eigenfunction corresponding to the volume fraction of

solids. The increments between shades of grey are equal. (c) Vector plot of fluid velocity
eigenfunction. (d ) Vector plot of solids velocity eigenfunction. Although the eigenfunctions are
shown in a square box, the actual periodic box has unequal k

x
and k

y
.

beads in water ’ system) are shown in figure 5. A similar figure for the ‘glass beads in
air ’ system can be found in GKS1 (figure 7). It is clear from these figures that the
eigenfunctions for all three cases are qualitatively similar. The quantitative differences
can be accounted for by the different amplitudes of the 1D-TWs and different extents
of asymmetry in these waves. In general, the extent of asymmetry in a 1D-TW increases
as its amplitude increases. The 1D-TW for the case of glass beads in water shown in
figure 5(a) is much less asymmetric than the waves for the other two cases. Higher-
amplitude 1D-TWs in the glass beads in water case do indeed develop appreciable
asymmetry (ASJ; Glasser 1996). However, when waves of the same amplitude are
compared, then the 1D-TW corresponding to glass beads in water does not have the
same degree of asymmetry as the 1D-TWs in the other two beds.
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F 5. Eigenfunctions corresponding to maximum growth rate (point U ) in figure 3(c). Glass
beads in water, k
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¯ 0±204, k

x
¯ 0±0634; N¯ 4, M¯ 1. See figure 4 for description.

3.4. Two-dimensional tra�elling wa�es

Every fully-developed 2D-TW is characterized by three parameters, namely, φ
!
, k

y
and

k
x
. Each wave will have its own wave speed, c, which is determined as a part of the

solution, as in the case of 1D-TWs. In a frame of reference moving at this wave speed,
the wave will appear as a steady solution. We have computed these 2D-TWs through
a continuation scheme starting from the point where these waves bifurcate from the
1D-TW (GKS1). In these calculations, all the dependent variables are approximated
with a Fourier series in the wave frame, as in the case of 1D-TWs. The particle volume
fraction norm, sAφs, is again the L

#
norm of the Fourier coefficients for φ, ignoring

the average volume fraction, φ
!
. Further details of the computational scheme can be

found elsewhere (GKS1; Glasser 1996).
Figures 6(a)–6(c) show sAφs as a function of k

y
for the three representative fluidized

beds. These figures include both the uniform state and the families of 1D-TWs and
2D-TWs. The average volume fraction of particles in every solution contained in these
figures is 0±57. We have also set k

x
¯k

y
. (Figure 6(a) has been presented in

our earlier paper, GKS1, as figure 10. It is repeated here for the sake of completeness.)
The uniform state, represented by sAφs¯ 0, loses stability at the Hopf bifurcation
point (A, B and C in figures 6(a), 6(b) and 6(c), respectively). Solutions on the 1D-TW
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F 6. Bifurcation diagrams showing the uniform state and one- and two-dimensional travelling
wave solutions. k

x
¯k

y
. ——, stable branches; - - -, unstable branches. (a) Glass beads in air. (b)

Lead shot in water. (c) Glass beads in water.

branch emerging from this point increase in amplitude and extent of asymmetry as one
moves away from the Hopf bifurcation point. In all three cases shown, the 2D-TW
branch bifurcates from the 1D-TW branch in a subcritical fashion at points G, H and
I in figures 6(a), 6(b) and 6(c), respectively. This branch subsequently turns around
and gains stability. It is important to spell out what is meant by stability in the present
context. Two-dimensional travelling waves shown in these figures as solid curves are
stable to small two-dimensional disturbances which retain the same periodicity as the
wave itself, and have x- and y-wave harmonics larger than or equal to the x- and y-
wavenumbers of the wave, respectively. The segments shown by dashed lines in these
figures are unstable to such disturbances. Note that high-amplitude 2D-TWs, which
are linearly stable, are possible for both bubbling and non-bubbling systems, i.e. if they
formed somehow, they would remain. It is readily apparent that, within the framework
of the assumed mathematical model, all three fluidized beds manifest an identical
hierarchy of bifurcations, demonstrating very clearly that bubbling and non-bubbling
beds cannot be distinguished on this basis.

Solutions at various points on the 2D-TW branch (for the case of 200 µm glass beads
fluidized by air) in figure 6(a) have been discussed in detail in GKS1. We simply note
here that the two-dimensional structure becomes increasingly pronounced as we move
away from the bifurcation point (point G in figure 6a) and that a bubble-like hole can
be readily seen in high-amplitude 2D-TWs. This is illustrated in figure 7, where the 2D-
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F 7. Two-dimensional travelling wave solution, corresponding to point O in figure 6(a). k
x
¯

k
y
¯ 0±246, N¯ 36, M¯ 24, c¯ 0±155. (a) Volume fraction of solids. (b) Streamline plot of fluid

velocity. (c) Streamline plot of solids velocity. (d ) Vector plot of fluid velocity (longest vector¯
0±160�

t
). (e) Vector plot of solids velocity (longest vector¯ 0±247�

t
). Note : all streamlines in this figure

and later figures should connect. Those streamlines that suggest spirals or disconnected segments are
artifacts of our plotting routine.

TW solution at point O in figure 6(a) is presented. The plots in this figure and all
subsequent figures showing fully developed travelling waves are presented in a frame
of reference moving with the wave. The presence of a bubble-like hole in the φ-
structure (figure 7a), a recirculation pattern in the gas streamlines inside the hole
(figure 7b) and a slight bending of the particle phase streamlines around the hole (figure
7c) are clearly evident. The fluid and particle phase velocities at various locations in the
periodic box, measured from a frame of reference moving with the wave, are shown in
figures 7(d ) and 7(e). The largest speed attained by the fluid phase (recorded as the
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F 8. Fluid and solids velocities along the vertical centreline (the axis of symmetry of the
solution) in figure 7. Velocity versus scaled height, Y*. (a) Fluid velocity. (b) Solids velocity. The
velocities are measured with respect to the wave frame.

longest vector in figure 7d ) is clearly in the dense phase region surrounding the central
hole. In contrast, the highest speed attained by the particle phase is inside the hole
(figure 7e). The vertical components of these velocities at various points along the
vertical centreline of the cell (which is the axis of symmetry of the solution) are plotted
in figures 8(a) and 8(b), respectively. The dimensionless wave speed, c, for the 2D-TW
shown in figures 7 and 8 is 0±155. The fluid attains its largest upward velocity inside the
bubble-like hole. The magnitude of this velocity is about 0±08 �

t
, which is roughly half

the wave velocity (figure 8a). The particles accelerate as they enter the bubble-like hole
through its roof, and then decelerate as they exit the bubble (figure 8b).

The manner in which the solution structure evolves along the 2D-TW branch for the
case of 1 mm lead shot fluidized by water (figure 6b) is very similar to that observed
for the case of 200 µm glass beads fluidized by air. The 2D-TW solution at point P in
figure 6(b) is presented in figure 9. The corresponding vertical velocities along the
vertical centreline are shown in figure 10. The similarity between figures 7 and 9, and
figures 8 and 10 is striking. As in the previous case, the particles move down through
the hole (in the wave frame), accelerating at first and then decelerating. The largest
speed attained by the fluid is in the particle-rich region surrounding the central hole,
while the largest speed attained by the particle phase is inside the hole. The largest
upward velocity attained by the fluid inside the hole is about 0±12 �

t
, which is again

roughly half the wave velocity (figure 10a).
We have examined a number of fully-developed 2D-TW solutions, which have

smaller k
y
(¯k

x
) values than those shown in figures 7 (for the glass beads in air system)

and 9 (for the system of lead shot in water). As k
y
decreases, the volume fraction norm

increases, and the particle concentration in the hole decreases. Nevertheless, the
qualitative features of the travelling wave solutions remain unaltered.

The evolution of fully developed solution structure along the 2D-TW branch for the
case of 1 mm glass beads fluidized by water (figure 6c) differs from those for the cases
of lead shot in water and glass beads in air in subtle ways that are not captured by
projections of the type shown in figure 6. In order to describe these differences, let us
examine the solutions at two points, Q and S, on the 2D-TW branch in figure 6(c). The
2D-TW solution at point Q, shown in figure 11, consisting of a central hole with a low
concentration of particles, a recirculation of fluid in this high voidage region and a
bending of particle phase streamlines around the hole, is qualitatively similar to those
presented earlier in figures 7 and 9 for the cases of glass beads in air and lead shot in
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F 9. Two-dimensional travelling wave solution, corresponding to point P in figure 6(b). k
x
¯

k
y
¯ 0±188, N¯ 24, M¯ 12, c¯ 0±238. (a) Volume fraction of solids. (b) Streamline plot of fluid

velocity. (c) Streamline plot of solids velocity. (d ) Vector plot of fluid velocity (longest vector¯
0±181�

t
). (e) Vector plot of solids velocity (longest vector¯ 0±295�

t
).

water. The y-components of the fluid and particle phase velocities along the vertical
centreline, shown in figure 12, resemble those shown earlier in figures 8 and 10. As in
the other two cases, the particles move down through the bubble-like hole, accelerating
first and then decelerating (figure 12b). The largest upward fluid velocity attained in the
hole is about 0±2 �

t
, which is roughly 75% of the wave velocity (figure 12a). This is

larger than the ratio of 0±5 recorded in the other two cases, so a quantitative difference
can be noted. Also, the shape of the hole in figure 11(a) is noticeably different from
those seen earlier in figures 7(a) and 9(a). The highest speed attained by the fluid phase
is in the particle-rich region surrounding the hole (figure 11d ), as in the previous two
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F 10. Fluid and solids velocities along the vertical centreline (the axis of symmetry of the
solution) in figure 9. Velocity versus scaled height, Y*. (a) Fluid velocity. (b) Solids velocity. The
velocities are measured with respect to the wave frame.

cases. The longest velocity vector for the particle phase (0±367 �
t
) is also located in the

particle-rich region (see figure 11e). This was not the case in the two cases described
earlier. This, however, is not a dramatic difference as the highest speed reached by the
particle phase inside the hole is only slightly smaller than in the previous figures.

The 2D-TW associated with point S in figure 6(c) is shown in figure 13 and the
corresponding centreline velocities are presented in figure 14. This solution has a larger
volume fraction norm than that corresponding to point Q (see figure 6c). The volume
fraction of particles in the central hole of figure 13(a) is significantly smaller than that
in the hole shown in figure 11(a). The velocity vectors presented in figures 13(d ) and
13(e), and the centreline velocities shown in figure 14 do reveal a dramatic difference
between this 2D-TW and the ones presented earlier. The longest velocity vector for the
fluid phase (in the wave frame) is now associated with the upward flow of fluid inside
the hole, which is in sharp contrast with the previous cases. The largest upward fluid
velocity attained in the hole exceeds �

t
, and is well above the wave velocity with respect

to the laboratory frame. A consequence of this rapid upflow of fluid in the hole is the
significant alteration of the velocity field of the particles inside the hole. The particles
still enter the bubble-like hole through the roof and they accelerate initially. However,
as they move down through the hole, they quickly decelerate upon encountering the
fluid rising rapidly upwards through the hole. This is followed by a rapid acceleration
in the region where the upward velocity of the fluid is beginning to decrease, and a final
deceleration as the particles exit the hole. During the intermediate deceleration, the
downward velocity of the particles (in the wave frame) dips down to about 0±05 �

t
. This

feature of intermediate deceleration of particles inside the bubble-like hole is present
in the solution corresponding to point R in figure 6(c) as well, where the smallest
downward velocity attained by the particle phase during the intermediate deceleration
(in the wave frame) is 0±28 �

t
. As k

y
(¯k

x
) is further decreased past point S (in figure

6c), the amplitude of the 2D-TW solution continues to increase and the volume
fraction of particles in the hole continues to decrease; the smallest downward velocity
attained by the particles during the intermediate deceleration inside the hole continues
to decrease; we searched, but did not find any case where the particle velocity changes
sign, indicating an upflow of particles inside the hole. It is also interesting to note that,
in the solution corresponding to point S, the longest velocity vector for the particle
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F 11. Two dimensional travelling wave solution, corresponding to point Q in figure 6(c). k
x
¯

k
y
¯ 0±173, N¯ 18, M¯ 13, c¯ 0±262. (a) Volume fraction of solids. (b) Streamline plot of fluid

velocity. (c) Streamline plot of solids velocity. (d ) Vector plot of fluid velocity (longest vector¯
0±235�

t
). (e) Vector plot of solids velocity (longest vector¯ 0±367�

t
).

phase is located in the particle-rich region surrounding the hole, and has a magnitude
of 0±845 �

t
, which is significantly larger than the highest speed achieved by the particles

inside the hole.
In the bifurcation analysis presented above, we have assumed that k

y
¯k

x
. In order

to ascertain that the features reported above are not restricted to square boxes, we
repeated the analysis by holding both φ

!
and k

x
constant, and treating k

y
as the

bifurcation parameter (Glasser 1996). Such bifurcation diagrams for the case of glass
beads fluidized by air have been presented in GKS1, where it was found that,
depending on the assumed value of k

x
, the 2D-TW branch may emerge subcritically or
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F 12. Fluid and solids velocities along the vertical centreline (the axis of symmetry of the
solution) in figure 11. Velocity versus scaled height, Y*. (a) Fluid velocity. (b) Solids velocity. The
velocities are measured with respect to the wave frame.

supercritically from the 1D-TW branch. We simply note here that the same has been
found to be true for all the systems (including those listed in table 1) analysed by us.
However, the generic features of the bifurcation diagram, namely, the bifurcation of
1D-TWs from the uniform state and 2D-TWs from the 1D-TWs, always remained
unaltered. In every case, large-amplitude 2D-TWs have bubble-like structures (Glasser
1996). Given the speculative nature of the closure relations for the stresses, we
examined the sensitivity of the bifurcation structure to changes in the expressions used
for particle phase pressure and viscosity (Glasser 1996). A detailed discussion of such
a sensitivity analysis for the case of glass beads in air has been presented in GKS1.
Again, we simply note that the generic features of the bifurcation diagram are robust
and remain unaltered by these changes (Glasser 1996).

3.5. Mathematical preliminaries for transient simulations

We have now established the robustness of the basic bifurcation hierarchy and the
persistence of the differences between high-amplitude solutions of non-bubbling (1 mm
glass beads fluidized by water) and bubbling (200 µm glass beads fluidized by air and
1 mm lead shot fluidized by water) systems. It is, of course, hardly obvious why this
difference should be adequate to distinguish a priori between bubbling and non-
bubbling systems, as both systems manifest bubble-like holes which are linearly stable.
Although we have been unable to prove this formally, we have been able to verify
through transient integration of the averaged equations of motion that this difference
is indeed significant. It will be shown below that fully developed 2D-TW solutions of
the type shown in figures 7, 9 and 11, in which the particles enter the hole through the
roof, accelerate only once and then decelerate as they exit the floor of the hole, readily
evolve when the uniform state or the fully developed 1D-TW is subjected to a small
two-dimensional perturbation. In contrast, fully developed solution structures such as
that shown in figure 13, in which the particles travelling along the centreline of the hole
experience additional deceleration and acceleration steps, do not develop even after a
long period of integration; they are not accessible from the initial conditions resulting
from small perturbations of the unstable uniform state.

The PDEs (namely, the averaged equations of motion) were transformed into a
system of ODEs with algebraic constraints, through a spectral approximation of all the
dependent variables (GKS1; Glasser 1996). The resulting system of differential and
algebraic equations was then integrated using the routine DASSL (Petzold 1982). This
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F 13. Two-dimensional travelling wave solution, corresponding to point S in figure 6(c). k
x
¯

k
y
¯ 0±0979, N¯ 36, M¯ 24, c¯ 0±520. (a) Volume fraction of solids. (b) Streamline plot of fluid

velocity. (c) Streamline plot of solids velocity. (d ) Vector plot of fluid velocity (longest vector¯
1±06�

t
). (e) Vector plot of solids velocity (longest vector¯ 0±845�

t
).

code makes use of backward difference formulae of orders one to five to approximate
the time derivative, and is based on the techniques introduced by Gear (1971). The
results of the linear stability and bifurcation analyses can be used to test and validate
transient integrations for accuracy and convergence. More traditional tests, consisting
of variations in the size of the system (the number of Fourier modes, N and M,
controlling the spatial discretization error), dealiasing, as well as variations of the local
time-discretization error tolerance, were also performed to validate the computations
presented here. We have generated our transients with different values of N and M, and
checked that the same spatial structures were consistently obtained at the same times.
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F 14. Fluid and solids velocities along the vertical centreline (the axis of symmetry of the
solution) in figure 13. Velocity versus scaled height, Y*. (a) Fluid velocity. (b) Solids velocity. The
velocities are measured with respect to the wave frame.
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F 15. Development of 1D-TWs. (a) Glass beads in air, k
y
¯ 0±246. (A) t# ¯ 0, (B) tW ¯ 414 (t¯

0±53 s), (C) tW ¯ 797 (t¯ 1±02 s), (D) t# ¯ 1508 (t¯ 1±93 s). Initial wave speed, c¯ 0±139. Final wave
speed, c¯ 0±127, N¯ 15. (b) Lead shot in water. k

y
¯ 0±188. (A) tW ¯ 0, (B) tW ¯ 104 (t¯ 0±1 s), (C)

tW ¯ 938 (t¯ 0±9 s), (D) tW ¯ 2708 (t¯ 2±6 s). Initial wave speed, c¯ 0±238. Final wave speed, c¯
0±227, N¯ 9. (c) Glass beads in water, k

y
¯ 0±173. (A) tW ¯ 0, (B) tW ¯ 4715 (t¯ 19±0 s), (C) tW ¯ 12159

(t¯ 49±0 s), (D) tW ¯ 15137 (t¯ 61±0 s). Initial wave speed, c¯ 0±201. Final wave speed, c¯ 0±200,
N¯ 9.
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F 16. Growth of a perturbation of the 1D-TW for the air fluidized bed. k
x
¯k

y
¯ 0±246.

(a) tW ¯ 0, c¯ 0±127. (b) tW ¯ 234 (t¯ 0±30 s), c¯ 0±129. (c) tW ¯ 391 (t¯ 0±50 s), c¯ 0±135. (d )
t# ¯ 742 (t¯ 0±95 s), c¯ 0±155. N¯ 36, M¯ 24.

Further details of our particular implementation can be found elsewhere (Glasser
1996).

3.6. E�olution of 1D-TW structure from an unstable uniform state

Our strategy for studying the transient development of large-amplitude nonlinear
solutions consists of starting in the neighbourhood of the basic, unstable (saddle-type)
solution and constructing initial conditions by adding (small) perturbations in the
direction of the unstable modes. We therefore approximate solutions on the unstable
manifold of the basic unstable state. More specifically, through a linear stability
analysis of the uniform state, the most unstable one-dimensional eigenvalue (for the
desired value of k

y
) and the corresponding eigenfunction were determined. This

eigenfunction was then scaled so that the maximum amplitude of the φ-perturbation
was 0±02, and was added to the base state to construct the initial condition for the
transient simulations. The evolution of one-dimensional φ-structures for glass beads in
air, lead shot in water and glass beads in water are illustrated in figures 15(a)–15(c),
respectively. The initial perturbation is sinusoidal in all three cases, and asymmetry
develops as the wave moves through the bed. The timestep for numerical integration
can be increased appreciably without sacrificing accuracy by following the evolution of
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F 17. Growth of a perturbation of the 1D-TW for lead shot in water. k
x
¯k

y
¯ 0±188.

(a) tW ¯ 0, c¯ 0±227. (b) tW ¯ 4688 (t¯ 4±5 s), c¯ 0±228. (c) t# ¯ 7812 (t¯ 7±5 s), c¯ 0±230. (d ) t# ¯ 9479
(t¯ 9±1 s), c¯ 0±238, N¯ 24, M¯ 12.

the wave from a frame of reference moving with an adaptive velocity close to the
apparent velocity of the transient wave itself (ASJ). This procedure was adopted in the
present study as well, so the relative positions of the φ-profiles shown in figures
15(a)–15(c) are arbitrary. The number of Fourier modes, N, reported in the captions
of these figures is the minimum value needed to represent the solutions accurately
(Glasser 1996). The figure captions include both dimensionless times (t# ) and
dimensional times (t). The order-of-magnitude growth times and the distance travelled
by the waves during this growth process for the two bubbling systems are comparable
(in both dimensional and dimensionless scales). However, as discussed by ASJ, the φ-
structure in the non-bubbling system develops much more slowly and the wave travels
a longer distance during the growth process.

3.7. E�olution of 2D-TW structure from an unstable 1D-TW solution

In the same spirit as above, an initial condition on the (one-dimensional) unstable
manifold of the saddle-type unstable 1D-TW solution was constructed. Through a
linear stability analysis of the 1D-TW, the most unstable eigenvalue (for the desired
value of k

x
) and the corresponding eigenfunction were determined. This eigenfunction



Fully de�eloped tra�elling wa�e solutions 179

(a)

0.52 0.6

(b)

0.49 0.6

(c)

0.36 0.61

(d)

0.2 0.62

F 18. Growth of a perturbation of the 1D-TW for glass beads in water. k
x
¯k

y
¯ 0±173.

(a) tW ¯ 0, c¯ 0±200. (b) tW ¯ 1300 (t¯ 5±24 s), c¯ 0±208. (c) tW ¯ 3980 (t¯ 16±04) s), c¯ 0±235, (d )
tW ¯ 5370 (t¯ 21±64 s), c¯ 0±262, N¯ 18, M¯ 13.

was then scaled so that the maximum amplitude of the φ-perturbation was 0±02, and
was added to the 1D-TW solution to construct the initial condition for the transient
simulations.

The growth of two-dimensional φ-structure in a periodic box with k
x
¯k

y
¯ 0±246,

for the case of 200 µm glass beads in air, is shown in figure 16. The initial condition,
shown in figure 16(a), has a small amount of lateral structure. As time proceeds, the
solution develops more lateral structure, the volume fraction of particles in the hole
decreases and the gradients become steeper. The number of modes required to
represent the structures accurately is indicated in the caption of this figure. The
structure shown in figure 16(d ) is virtually identical to the fully developed wave shown
in figure 7. The growth of this bubble-like hole is very rapid (about 750 dimensionless
time units which, for this specific example, is equal to approximately 1 s). During this
growth period, the wave has travelled a distance of about 100 dimensionless units
(19 cm). These are comparable to the growth times and distances required for the
development of a fully developed 1D-TW from the uniform state. The evolution of φ-
structure presented in this figure is similar to that presented in ASJ, who generated the
results using an entirely different numerical scheme.
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F 19. Growth of a perturbation of the 1D-TW for glass beads in water. k
x
¯k

y
¯ 0±0979.

(a) tW ¯ 0, c¯ 0±200. (b) tW ¯ 261 (t¯ 1±05 s), c¯ 2±08. (c) tW ¯ 385 (t¯ 1±55 s), c¯ 0±235. (d ) tW ¯ 437
(t¯ 1±76 s), c¯ 0±262. (e) tW ¯ 561 (t¯ 2±26 s), c¯ 0±262. ( f ) tW ¯ 1752 (t¯ 7±06 s), c¯ 0±262, N¯ 18,
M¯ 13.
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F 20. Growth of a two-dimensional perturbation of the uniform state for glass beads in water.
k
x
¯k

y
¯ 0±173. (a) tW ¯ 0, c¯ 0±201. (b) tW ¯ 6948 (t¯ 28±0 s), c¯ 0±209. (c) tW ¯ 10670 (t¯ 43±0 s),

c¯ 0±243. (d ) tW ¯ 12655 (t¯ 51 s), c¯ 0±262, N¯ 18, M¯ 13.

Figure 17 presents the evolution of φ-structure in a periodic box with k
x
¯k

y
¯

0±188 for the case of lead shot in water. Figure 17(a) indicates the initial state and the
structure in figure 17(d ) is very close to the fully developed solution (figure 9). The
similarity between figures 16 and 17 is striking.

The development of φ-structure in a periodic box with k
x
¯k

y
¯ 0±173 for the case

of glass beads in water (corresponding to the same conditions as point Q in figure 6c)
is shown in figure 18. Once again, the result shown in figure 18(d ) is very close to the
fully developed solution (figure 11). The manner in which the two-dimensional
structure evolves in this case is clearly similar to that shown in figures 16 and 17.

Figure 19 describes the evolution of φ-structure in a periodic box with k
x
¯k

y
¯

0±0979 for the case of glass beads in water (corresponding to the same conditions as
point S in figure 6c). The perturbed 1D-TW (figure 19a) buckles, and a high voidage
region forms and accelerates upwards (figure 19b). Fluid begins to recirculate inside
this high voidage region which, in turn, gives rise to the formation of a region of high
φ at the base of the hole. By t# ¯ 385 (figure 19c) this region of high φ has grown
sufficiently large to disturb and break up the developing hole. The region of high
voidage continues to accelerate, leaving behind arms of slower-moving voidage
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F 21. Growth of a two-dimensional perturbation of the uniform state for glass beads in water.
k
x
¯k

y
¯ 0±0979 (a) tW ¯ 0, c¯ 0±201. (b) tW ¯ 620 (t¯ 2±5 s), c¯ 0±209. (c) tW ¯ 1241 (t¯ 5±0 s), c¯

0±243. (d ) tW ¯ 6452 (t¯ 26±0 s), c¯ 0±262. N¯ 18, M¯ 13.

perturbations (figures 19(c) and 19(d )). After some time, this region of high voidage
begins to interact with the slower-moving arms of the cell above (figure 19d ) and
eventually collides with it (figure 19e). Although the concentration of particles in the
high voidage region continues to decline as time proceeds, the recirculation observed
in the fluid phase is almost completely destroyed by the time t# ¯ 561 (figure 19e).
Transient integration of the averaged equations of motion for the case shown in figure
19 is computationally much more intensive than the cases described earlier, requiring
very small timesteps. One of the reasons for this is that different structures in the
periodic box (for example, see figure 19e) move at significantly different velocities
through the bed. So, the strategy of performing the integration in an adaptively moving
frame of reference (which permits larger timesteps to be taken) is not helpful any more.
Integrating the equations up to t# as high as 1752, we observed that the structure
changed continually and rapidly with time, without settling down into any recognizable
pattern. The solution at t# ¯ 1752 (figure 19 f ) is nowhere near the fully developed
structure presented in figures 13 and 14.
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3.8. E�olution of 2D-TW structure from an unstable uniform state

We have also examined the growth of two-dimensional structures from a uniform state.
In this case, while a linear stability analysis indicates that the unstable uniform state
is most unstable to one-dimensional disturbances (the eigenfunction of the leading
positive eigenvalue has one-dimensional structure), more than one unstable direction
may exist depending on the values of k

x
and k

y
. The next mode to become unstable is

a ‘mixed mode’ (whose eigenfunction has both vertical and lateral structure, see
GKS1). In the case of such a two-dimensional unstable manifold for the uniform
solution, we constructed initial conditions with components in both unstable directions.
Through a linear stability analysis of the uniform state, the unstable one-dimensional
eigenvalue and the most unstable two-dimensional eigenvalue (the ‘mixed mode’), and
corresponding eigenfunctions were determined. Each eigenfunction was then scaled so
that the maximum amplitude of the φ-perturbation was 0±01, and they were added to
the base state to construct the initial condition for these transient simulations.

The evolution of two-dimensional structures for the case of glass beads in water
corresponding to point Q in figure 6(c) is presented in figure 20. Figure 20(a) shows
the initial state and figure 20(d ) is very close to the corresponding fully developed
solutions (figure 11a). It is clear that the fully developed structure evolves smoothly in
this case, just as it did when we started from a perturbed 1D-TW (figure 18). We simply
note here that the same was found to be true for solutions corresponding to points O
and P and in figures 6(a), and 6(b), representing bubble-like solutions of ‘glass beads
in air ’ and ‘ lead shot in water ’ systems (Glasser 1996).

Figure 21 corresponds to the same conditions as point S (figure 6c) of the glass beads
in water system, where we see once again that the structure does not evolve in a smooth
manner. In this example we have followed the growth for a much longer time (when
compared to that shown in figure 19). Yet the structure is nowhere near the
corresponding fully developed structure.

4. Discussion

Anderson et al. (1995) examined the growth of two-dimensional structures in
bubbling and non-bubbling systems through transient integration of the averaged
equations of motion assuming spatial periodicity. They demonstrated that apparently
stable bubble-like solutions evolved smoothly in a bed of glass beads fluidized by air.
In contrast, no such structures developed in a bed of glass beads fluidized by water.
They went on to conclude that the equations of motion with simple and credible
closure relations contained the essential physics needed to distinguish between
bubbling and non-bubbling systems. The present study seeks a more specific
understanding of the origin of this distinction.

We have established that both bubbling and non-bubbling systems manifest
identical bifurcation hierarchy. In both cases, fully-developed two-dimensional
travelling wave solutions of high amplitude have bubble-like holes, and these solutions
are linearly stable. Furthermore, recirculation of fluid is observed in both cases, with
fluid travelling upward (in the wave frame) in the centre of the hole. In some instances,
this upward velocity is much smaller than the terminal velocity of the particle, while
in others, it can exceed the terminal velocity. In the former situation, the particles
accelerate as they enter the hole through its roof and decelerate as they exit the hole
at the bottom. We have shown that disturbances of the unstable base state as well as
of the unstable 1D-TW will evolve smoothly to these fully developed states.
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In the latter situation, the particles experience an intermediate stage of deceleration
and re-acceleration. These locally stable fully developed two-dimensional states,
however, do not evolve smoothly (i.e. are not accessible) from either the base or the
1D-TW states. Small perturbations of the base or 1D-TW states do give rise to
transient two-dimensional structures, which neither approach the stable 2D-TWs nor
settle down to stationary patterns on the (quite extensive) timescale of our simulations.
It is tempting to ascribe the ‘ inaccessibility ’ of these bubble-like structures to
differences in growth rates between the primary and secondary instabilities (ASJ). This
difference does correlate with non-bubbling systems, but does not tell the entire story:
while high-amplitude two-dimensional solutions are not accessible to simulations
starting close to the unstable base state or the 1D-TW, small-amplitude two-
dimensional solutions are indeed accessible even in the presence of such a pronounced
difference in timescales between the primary and secondary instabilities. During the
growth of high-amplitude solutions, a bubble-like structure may form initially, but it
breaks up sooner or later (as noted already in ASJ). The formation of such a transient
bubble-like voidage structure in a non-bubbling liquid-fluidized bed has indeed been
observed experimentally by El-Kaissy & Homsy (1976) and Didwania & Homsy
(1981). Local stability and bifurcation calculations cannot explain such a (global)
transient feature of the flow; the transients do not appear to approach any obvious
(tertiary, unstable and possibly time-dependent) additional solution branches, even
though such separatrices must be present. The calculations quickly get very computer-
intensive owing to the generation of a wide range of spatial and temporal scales. Even
though these transients do not eventually ‘settle down’, they do reveal a physically
relevant, albeit transient, bubble breakup mechanism, discussed by ASJ. We propose
that the appearance of a fully developed solution (in a numerical bifurcation analysis)
in which the particles experience an intermediate stage of deceleration and re-
acceleration can be used as an identification mark of non-bubbling systems. This
classification will correctly group the cases of 200 µm glass beads in air, and 1 mm lead
shot in water as bubbling systems. The system of 1 mm glass beads in water will be
labelled by this criterion as non-bubbling. Adopting this classification scheme, we
sought to identify the key dimensionless group which distinguishes bubbling and non-
bubbling systems (see Glasser 1996).

The equations of motion contain, six independent dimensionless groups, δ, γ, φ
c
(or

α), Ω, n and r. We simply note here that γ, φ
c
(or α), n and r are not critical from the

point of view of distinguishing bubbling and non-bubbling systems. For example, it was
found through numerical bifurcation analysis (Glasser 1996) that a bubbling system
cannot be transformed into a non-bubbling system by changing φ

c
(or, equivalently, α).

The effect of δ on the bifurcation structure was examined by holding the values of the
dimensionless parameters α, γ, Ω, n and r, to be the same as those in the first column
of table 1 and changing only δ to 0±5. This change will necessarily alter the value of φ

c
,

but this change is only small (φ
c

is now 0±58). It was found that the family of fully
developed 2D-TW solutions (computed for φ

!
¯ 0±577, which is slightly smaller than

φ
c
) did not develop features indicative of non-bubbling systems (Glasser 1996). This

suggests that δ is not a critical parameter.
It is well documented that beds of 1 mm glass beads fluidized by water do not

bubble, while beds of 1 mm lead shot fluidized by water are known to bubble. Clearly,
the density ratio has influenced the bed behaviour in a significant way. Thus, our
finding that δ is not a critical parameter appears at first sight to be inconsistent with
experimental observations, but it is not. It is important to recognize that in such
experiments, one has not only changed the parameter δ appearing in the model, but
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also other parameters (most notably, Ω) (see columns 2 and 3 of table 1). Our analysis
reveals that changing δ, while holding Ω constant, does not produce qualitative
changes.

Thus, the key parameter which separates bubbling and non-bubbling systems must
by Ω. It is clear from table 1 that bubbling systems are characterized by large values
of Ω, while its value for the non-bubbling system is noticeably smaller. In order to
verify that a bubbling system can be changed into a non-bubbling system by simply
decreasing Ω, consider a system having the same values of α, δ, γ, n and r as in column
1 of table 1, and Ω¯ 3±79. The bifurcation diagram for this system with φ

!
¯ 0±57 is

shown in figure 22. The fully-developed solutions for two points V (not shown) and
W (figure 23) on the 2D-TW branch of this figure are qualitatively similar to those
corresponding to points Q and S of figure 6(c) (see figures 11 and 13). Thus, we can
state with some confidence that systems for which Ω¯O(1) can be classified as non-
bubbling, while those for which Ω¯O(100) will bubble.

Note that in the example presented in figures 22 and 23, δ' 1 so that we are still
looking at a gas-fluidized bed. Furthermore, decreasing Ω is physically equivalent to
decreasing the particle size. Thus, the present analysis suggests that gas-fluidized beds
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of ‘small ’ non-cohesive particles will not bubble. There does not appear to be any
experimental evidence to support this finding. It would be of interest to investigate
experimentally the fluidization characteristics of small non-cohesive particles (of
various diameters) to test our finding. It should be remarked that air-fluidized beds of
fluid catalytic cracking (FCC) particles, with a mean diameter of about 75 µm, do
bubble (Tsinontides & Jackson 1993). However, it has been shown that a bed of FCC
particles manifests a yield stress and a pronounced hysteresis during fluidization}
defluidization cycles (Tsinontides & Jackson 1993). We conjecture that bubbling
observed in this system is a consequence of the cohesive interactions, and that in the
absence of cohesive interactions air-fluidized beds of particles of this size may not
bubble easily.

The parameter Ω contains the viscosity parameter A whose value is not precisely
known. Note that we had assumed that the three physical systems described in table
1 have the same value of A. This assumption is, of course, irrelevant in our analysis of
the equations in a dimensionless form, which revealed Ω as the key parameter.
Nevertheless, the value assumed for A will impact the value of Ω assigned to a given
physical system which, in turn, can affect how this system is classified. It is therefore
important to express A in terms of suitable length, velocity and density scales
characterizing the fluidized suspension. From a dimensional argument, it appears
natural to write AEK ρ

s
�
t
d
p
, where K is a proportionality constant. Schu$ gerl, Merz

& Fetting (1961) have measured viscosities of gas-fluidized beds using a Couette
cylinder viscometer and their results do support such a scaling. It is interesting to
assume this scaling and examine the predicted consequences. Inserting this relation into
the definition of Ω, we get

Ω¯B 0 �#
t

gd
p

1"/#3BFr
t
"/#, (11)

where B¯K−"/# and Fr
t
is a Froude number based on the terminal velocity.

Wilhelm & Kwauk (1948) proposed empirically a Froude number criterion for
distinguishing between bubbling and non-bubbling systems:

Fr
m

( 13bubbling, Fr
m

' 13non-bubbling,

where Fr
m

¯ (u#
m
}gd

p
) and u

m
is the relative velocity between the fluid and particle

phases under conditions of minimum fluidization. Early theoretical efforts in this field
tried to justify this Froude number criterion for distinguishing between bubbling and
non-bubbling systems through linear stability analysis of the uniform state by treating
bubbling as a manifestation of loss of stability of the state of uniform fluidization and
absence of bubbling as a sign of stability of the uniform state (see ASJ for further
discussion of this point). Experiments by Anderson & Jackson (1969) and El-Kaissy &
Homsy (1976) exposed this approach as fallacious. The present work and the earlier
work by ASJ have revealed clearly that the distinction between bubbling and non-
bubbling systems is intimately linked with high-amplitude solutions; yet, it appears
that this differentiation may indeed be expressed in terms of a Froude number
criterion.

Harrison et al. (1961) pointed out that bubbles cannot be observed experimentally
unless they are considerably larger than the particle size, and proposed a criterion for
distinguishing between bubbling and non-bubbling systems on the basis of largest
stable bubble size (D

e
). They examined the stability of spherical cap bubbles in a

fluidized bed and concluded that large bubbles can be stable in most gas-fluidized beds,
while the largest size of stable bubble in most liquid-fluidized beds is comparable to the
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size of the particles in the bed. Their analysis revealed that D
e
}d

p
is proportional to

Fr
m
, thus providing a physical justification for the empirical observation of Wilhelm &

Kwauk (1948).
Our computational analysis suggests that fluidized beds with Ω( 10 will bubble,

while those with Ω' 10 are not likely to. Assuming B in (11) to be O(1), we find that
bubbling systems are characterized by Fr

t
( 100, while for non-bubbling Fr

t
' 100.

Noting that u
m

is typically a tenth of �
t
for the cases we examined, one recovers the

same criterion deduced experimentally by Wilhelm & Kwauk (1948).
The values of B corresponding to the values of A assumed in our simulations are

listed in table 1. It can be seen that B is approximately a constant (of O(1)) for the glass
beads in air and the glass beads in water cases. However, the value of B for lead shot
fluidized by water is O(10). This highlights that definitive classification of physical
systems on the basis of the equations of motion analysed in the present study can be
made only when one can characterize the particle phase viscosity quantitatively. In any
case, we know now that these equations do contain the essential physics needed to
separate bubbling and non-bubbling behaviour and that the controlling parameter
is Ω.
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